DISCIPLINA DE TÉCNICA OPERATÓRIA E CIRURGIA EXPERIMENTAL

ALTERAÇÕES SISTÊMICAS AO TRAUMA CIRÚRGICO

Edevard J de Araujo

eja2536@gmail.com

HISTÓRICO

HIPÓCRATES (460-370 ac)

Saúde = equilíbrio entre os 4 humores Doença = desequilíbrio, *discrasia* Sangue bile negra bile amarela fleugma

Escola EPICURO (306-271 ac) Escola ESTOICA (333-263 ac) mente sobre a saúde apatia - ausência sentimeto ataraxia – ausência da inquietude

THOMAS SYDENHAM (1624-1689)

potencial morbidade reações orgânicas à doença

HISTÓRICO

JOHN HUNTER (1728-1793)

reações orgânicas ao trauma/doenças "ferimentos por arma de fogo curavam melhor sem interferência do cirurgião"

HAHNEMANN (1755-1843)

força vital reativa a fatores internos/externos

ROBERT HOOKE (1635-1703)

primeiro conceito "resiliência organismo"

stress reaction F (stress force) = K(constant). ΔL (tensão, deformação)

HISTÓRICO

CLAUDE BERNARD (1813-1878)

conceito de "ambiente interno" (milieu interieur) regulação pelo SNC

WALTER BRADFORD CANNON (1871-1945)

cunhou o termo HOMEOSTASE doença = quebra da homeostase

Fight-flight response

resposta ao stress

"freeze, flight, fight or fright"

aumento fluxo sanguineo seletivo para áreas de sobrevivência (diving reflex)

HISTÓRICO

DAVID CUTHBERTSON (1900-1989)

fases reação ao choque (ebb phase) e pós-choque (flow phase)

HANS SEYLE (1907-1982)

General Adaptation Syndrome "resposta inespecífica ao trauma"

eustress distress resposta saudável resposta danosa

HISTÓRICO

Fases da resposta ao trauma segundo os autores

Autor		II	III
Cannon	Flight (vôo)	Fight (luta)	Fright (susto)
Curthbertson	Ebb (vazante)	Flow initial (fluxo)	Flow late
Selye	Shock	Contra-shock	Exhaustion
Laborit	Depression	Reaction	Terminal
Bone et al	SIRS	Multiorgan failure	Recovery/death
McEwen	Allostatic response	Allostatic state	Allostatic overload
Chrousos	Eustasis	Dyshomeostasis	Hyperstasis

Sir David Cuthbertson (1930) - the metabolic response to injury in humans: "ebb " and "flow" phases

Injury **RECOVERY FLOW EBB** Weeks Hours Days **ANABOLISM SHOCK CATABOLISM BREAKING DOWN BUILDING UP USED ENERGY STORES ENERGY**

FASES DA RESPOSTA AO TRAUMA, segundo CURTHBERTSON/MOORE

DURAÇÃO	OBJETIVO	ALTERAÇÕES FISIOLÓGICAS	HORMÔNIOS
1 – 3 dias	Manter volume sanguíneo	 I fluxo sanguíneo, ↓ temperatura, ↓ consumo O₂, vasoconstricção, proteínas da fase aguda e ↑ CO e FC 	Catecolaminas, Cortisol e Aldosterona
3 – 10 dias	Manter a energia	 ¶ fluxo sanguíneo,	Insulina, glucagon, cortisol e catecolaminas com resistência à insulina
10 – 60 dias	Repor tecidos danificados	Balanço nitrogenado positivo	GH e IGF (insuline-like growth factor)

METABOLIC CHANGES AFTER MAJOR TRAUMA (CUTHBERTSON, LANCET, 1942)

EBB (Untreated shock)

- **temperatura** corporal
- L consumo de O2
- Acidose lática
- hormônios stress
- **L** insulina
- Hiperglicemia
- Gluconeogenese
- substrato de consumo
- Fase de resposta hepática aguda
- Ativação imunológica

FLOW PHASE

- 1 temperatura corporal
- consumo O2
- Balanço nitrogenado negativo
- I hormônios stress
- **1** insulina ou nível normal
- Hiperglicemia
- Gluconeogenese
- Proteinolise (autocanibalismo)
- Lipólise
- Imunosupressão

CAUSAS DO TRAUMA (estímulo)

Mecânica (cirurgia, ferimentos)

Infecção

Temperatura

Agentes químicos

Irradiação

Auto-imune

Necrose

FENÔMENOS LOCAIS

VASCULAR

vaso-constrição reflexa manter volemia

vaso-dilatação (histamina) oxigenação

nutrientes

diluir toxinas

fibrinogenio (limites)

EDEMA CALOR RUBOR

DOR LIMITAÇÃO FUNCIONAL

FENÔMENOS LOCAIS

CELULAR

Diapedese neutrófilos, monócitos e macrófagos bradicinina (dor)

quimiotaxia

histamina

óxido nítrico

citocinas

sistema complemento

ESTÍMULOS AFERENTES QUE MODULAM A INTENSIDADE DA RESPOSTA AO TRAUMA

O SISTEMA DE RESPOSTA

Há uma rede que trabalha em conjunto para manter o organismo informado e pronto para reagir às alterações no meio intra ou extra-celular

- 1. SISTEMA CENTRAL
- 2. SISTEMA PERIFÉRICO
- 3. SISTEMA CELULAR

O SISTEMA DE RESPOSTA

Há uma rede que trabalha em conjunto para manter o organismo informado e pronto para reagir às alterações no meio intra ou extra-celular

1. SISTEMA CENTRAL - a região primitiva (diencéfalo e tronco cerebral) é a região motriz desse sistema que é alimentada pelos receptores e sinais aferentes que chegam por fibras situadas na pele, externamente, e nos demais tecidos. É alimentada também pelo córtex prefrontal (cognição), sistema límbico (emoção) e hipocampo (memória).

O SISTEMA DE RESPOSTA

Há uma rede que trabalha em conjunto para manter o organismo informado e pronto para reagir às alterações no meio intra ou extra-celular

2. SISTEMA PERIFÉRICO - essa parte da rede consiste da hipófise, SNA, adrenal, células imunológicas. Essa interação é orquestrada pelas citocinas. A liberação de cortisol, adrenalina e citocinas é interconectada com sistemas de feedback positivo e negativo para gerar uma resposta adequada ao insulto.

O SISTEMA DE RESPOSTA

Há uma rede que trabalha em conjunto para manter o organismo informado e pronto para reagir às alterações no meio intra ou extra-celular

3. SISTEMA CELULAR - o caminho comum e principal do sistema

celular se dá na MITOCÔNDRIA, à parte de ser também fonte

energética

VIAS EFERENTES CEREBRAIS

Hipotálamo + tronco cerebral	CRH	corticotropina	
	AVP	arginina-angiotensina	
Sistema locus cerelus	LC	sistema simpático (n-adr)	

OUTRAS VIAS EFERENTES

Gonadal
Lactotrófico
Somatotrófico
tireóideo

EIXO HIPOTÁLAMO-PITUITÁRIO-ADRENAL (HPA)

HORMONIO ADRENO-CORTICOTRÓFICO (ACTH)

GLICOCORTICÓIDES (CORTISOL)

Corticotrofina e cortisol, aumentam de acordo com a intensidade da agressão

Fornecimento de energia aumentando o metabolismo carboidratos, lipídeos, proteinas,

EIXO AUTONÔMICO (SISTEMA NERVOSO AUTONOMO)

Adrenalina

Noradrenalina

EIXO SOMATOTRÓPICO

GH

EIXO GONADAL

Testosterona diminui após o trauma

Elevação LH e FSH

EIXO LACTOTRÓFICO

Prolactina

FISIOLÓGICA

Endócrina

Metabólica

Imunológica

Hematológica

PSICOBIOLOGICA

Fadiga

COMPORTAMENTAL

Relutância em se mover

RESPOSTAS AO TRAUMA, BENEFÍCIOS E RISCOS

RESPOSTAS	BENEFÍCIOS	RISCOS
↑ FC	Manter PA e perfusão	Hipertensão, isquemia miocárdio
Débito cardíaco	Manter perfusão tissular	Arritmias
Retenção Na e H ₂ O	Manter volume IV	Hiponatremia, hipervolemia, EAP, ICC,
↑ Glicemia	Oferta de substrato	Glicemia, diurese osmótia, hiperosmolaridade
Catabolismo	Oferta substrato	Desnutrição, miólise, atrofia vilosidades intestinais
adesividade plaquetária	Hemostasia	Trombose, embolia

COMPONENTES DE RESPOSTA AO TRAUMA

1. COMPONENTES PRIMÁRIOS TRAUMA

2. COMPONENTES SECUNDÁRIOS REAÇÃO

Alterações endócrinas

Hormônio anti-diurético

Aldoserona

Cortisol

Catecolaminas

Insulina

Glucagon

Hormonio crescimento

Hormonio tireóideo

Hormônio gonadotrópico

Alterações hemodinâmicas

Mediadores com ações locais e sistêmica (citocinas)

Alterações imunológicas e infecções

COMPONENTES DE RESPOSTA AO TRAUMA

- 3. Efeitos deletérios da resposta exagerada com falência orgânica
- 4. Componentes associados

Alterações no ritmo alimentar Imobilização prolongada Perdas hidroeletrolíticas extra-renais Doenças intercorrentes

5. Fases da resposta metabólica ao trauma

Fase catabólica do pós-operatório

Fase de equilíbrio

Fase de anabolismo proteico

Fase de anabolismo lipídico

6. Estratégia para atenuar os efeitos do trauma

A resposta sistêmica é uniforme, independente do tipo de agressão

1. COMPONENTES PRIMÁRIOS dependem exclusivamente do agente agressor

Podem ser reversíveis, irreversíveis e/ou letais

- Lesões teciduais edema, lesão vascular, hematomas, hemorragias
- 1. Lesões de órgãos específicos insuficiência parcial/total
- 2. Lesões combinadas ou múltiplas

2. COMPONENTES SECUNDÁRIOS

ativados por via aferente somáticas e autonômicas

Alterações endócrinas

disponibilização nutrientes, diminuir catabolismo

HORMÔNIO ANTI-DIURÉTICO (ADH)

protege volemia

estimula glicogenólise e gliconeogênese

promove vasoconstrição esplâncnica

ALDOSTERONA

liberada pela angiotensina II e hipovolemia

estimulada pela fuga de volume p extra-celulular

mantem volume intravascular

CORTISOL

mantem a PA

conversão de proteína em glicogênio

2. COMPONENTES SECUNDÁRIOS ativados por via aferente somáticas e autonômicas

Alterações endócrinas disponibilização nutrientes, diminuir catabolismo

CATECOLAMINAS glicogenólise, gliconeogênese,

hidrólise gorduras, liberação ácidos graxos

vaso-constrição e estimulação cardíaca

INSULINA diminui para aumentar glicemia

GLUCAGON aumenta para degradar glicose

liberação acidos graxos e glicerol

HORMÔNIO CRESCIMENTO aumenta concentração glicose e ácidos graxos

2. COMPONENTES SECUNDÁRIOS

ativados por via aferente somáticas e autonômicas

Alterações endócrinas

disponibilização nutrientes, diminuir catabolismo

HORMÔNIO TIREÓIDEO

queda T3, mantem TSH promove estado baixo catabolismo

HORMÔNIO GONADOTRÓFICO

diminui testosterona, aumenta LH e FSH promove hipogonadismo durante o trauma

2. COMPONENTES SECUNDÁRIOS - ALTERAÇÕES ENDÓCRINAS

HIPÓFISE	ADRENAL	PÂNCREAS	OUTROS
GH ACTH β endorfina prolactina	catecolaminas cortisol aldosterona	glucagon	renina
arginina-vasopressina			

insulina testosterona estrogênio T3

TSH LH FSH

2. COMPONENTES SECUNDÁRIOS

ativados por via aferente somáticas e autonômicas

Alterações hemodinâmicas fuga líquido para o extra-celular vaso-constrição para preservar volemia priorização órgãos nobres baroreceptores estimulam n-adrenalina aumento frequência e inotropismo cardíaco jovens suportam perda até 30% volemia

Mediadores de ação local e sistêmica (citocinas)

2. COMPONENTES SECUNDÁRIOS

ativados por via aferente somáticas e autonômicas

CITOCINAS

glicoproteinas que incluem interleucinas (IL 1-17), interferons e Fator de Necrose Tumoral (TNF), sintetizadas por macrófagos, fibroblastos, células endoteliais

CITOCINAS PRÓ-INFLAMATÓRIAS

TNFalfa, IL-1, IL-2, IL-12, IFNgama, IL-6, IL-8

CITOCINAS ANTI-INFLAMATÓRIAS

IL-4, IL-10, IL-13,

COMPONENTES DE RESPOSTA AO TRAUMA

3. Efeitos deletérios da resposta exagerada com falência orgânica (Síndrome da Resposta Inflamatória Sistêmica - SIRS)

Reação sistêmica massiva, com falência de múltiplos órgãos

- a) Temperatura > 38°C ou < 36°C
- b) Frequência cardíaca > 90 bpm
- c) Frequência respiratória > 20 mpm
- d) Leucócitos > 12.000 ou < 4.000 ou > 10% de formas jovens

COMPONENTES DE RESPOSTA AO TRAUMA

4. Componentes associados

Alterações no ritmo alimentar

uso de gorduras, proteínas e glicose como fonte energética

Imobilização prolongada atrofia muscular, catabolismo proteico

Perdas hidroeletrolíticas extra-renais

perdas por estomias, fístulas

Doenças intercorrentes

co-morbidades pré-existentes ou novas

COMPONENTES DE RESPOSTA AO TRAUMA

5. Fases da resposta metabólica ao trauma

Fase catabólica do pós-operatório

balanço nitrogênio negativo

Fase de equilíbrio

melhora clínica, bioquímica e catabólica

Fase de anabolismo proteico

balanço nitrogênio positivo

Fase de anabolismo lipídico

superavit calórico

COMPONENTES DA RESPOSTA METABÓLICA AO TRAUMA

Consequências Fisiológicas

Manifestações Metabólicas

Manifestações Clínicas

Alterações Laboratoriais

COMPONENTES DA RESPOSTA METABÓLICA AO TRAUMA

FISIOLÓGICAS

METABÓLICAS

- † débito cardíaco
- † ventilação
- † transporte membrana celular
- perda de peso
- cicatrização

- hipermetabolismo
- † gluconeogênese
- ↑ proteólise
- † oxidação gordura

COMPONENTES DA RESPOSTA METABÓLICA AO TRAUMA

SINAIS CLÍNICOS

LABORATÓRIO

- Febre
- Taquicardia
- Taquipnéia
- Presença da lesão ou inflamação (trauma)
- Anorexia

- Leucocitose/leucopenia
- Hyperglicemia
- † PCR/fatores fase aguda
- Disfunção Hepática/Renal

COMPONENTES DE RESPOSTA AO TRAUMA

6. Estratégia para atenuar os efeitos do trauma

prevenção
pré-operatório adequado
analgesia
procedimentos minimamente invasivos
procedimentos vídeo-assistidos
monitoramento/reposição de perdas
nutrição
atitudes pró-ativas

- 1. MARQUES, R.G. Técnica Operatória e Cirurgia Experimental. Guanabara Koogan, 2005.
- Weledji EP, Assob JC The Systemic Response to Surgical Trauma – A review. ISSN 2073-9990 East Cent. Afr. J. surg. (Online)
- 3. Cuesta JM, Singer M The stress response and critical illnes: A review. Crit Care, 2012, 40: 1-7

- 1. No trauma tissular, ocorre um estímulo aferente ou eferente para despertar o eixo hipotálamo-pituitário-adrenal (HPA)?
- 2. O HPA libera o hormônio adreno-corticotrófico para estimular ou inibir a produção de cortisol e corticotrofina?
- 3. O cortisol tem efeito de aumentar ou diminuir a frequência cardíaca e a pressão arterial?
- 4. No choque, o aumento da volemia, o débito e a frequência cardíaca, tem o objetivo de preservar quais órgãos?

- 5. Qual área, na fase aguda do choque, recebe menos suprimento sanguíneo?
- 6. Do tronco cerebral, há liberação ou inibição do sistema arginina-angiotensina? Para agir onde?
- 7. A angiotensina II aumenta ou diminui a secreção de aldosterona?
- 8. A aldosterona, age no sentido de manter o volume intra ou extra-vascular?

- 9. O Hormonio anti-diurético (HAD) aumenta ou diminui, na fase aguda do choque?
- 10. A função do HDA é preservar o volume intra ou extra-vascular?

- 11. O efeito do HAD se dá em que órgão? Como?
- 12. Na fase aguda do choque, a insulina aumenta ou diminui?

- 13. Na fase aguda de um trauma intenso, o paciente tende mais à hipoglicemia ou hiperglicemia?
- 14. O aumento da frequência cardíaca e da presãao arterial de forma exacerbada teria algum risco ao paciente?
- 15. O aumento da adesividade plaquetária, como mecanismo de defesa na fase aguda do trauma, pode levar a algum risco para o paciente?
- 16. O aumento da permeabilidade vascular, pode trazer algum risco ao paciente?